The aquifer vulnerability map as a tool for preventing water contamination in agricultural areas. The case of Los Padres stream basin (General Pueyrredon district, Buenos Aires province, Argentina).

Authors

  • Liliana Ester Viglianchino Institute of Innovation for Agricultural Production and Sustainable Development. National Institute of Agricultural Technology. National Council for Scientific and Technical Research. https://orcid.org/0009-0006-5712-0929
  • Sebastian Grondona Institute of Coastal and Quaternary Geology. National University of Mar del Plata. Buenos Aires Scientific Research Commission. Institute of Marine and Coastal Research. National University of Mar del Plata. National Council for Scientific and Technical Research. https://orcid.org/0000-0002-7451-1204
  • Francisco Bedmar Department of Vegetable Production, Soils and Rural Engineering. Faculty of Agricultural Sciences. National University of Mar del Plata. https://orcid.org/0000-0002-0118-1224
  • Hernán Pablo Angelini Institute of Innovation for Agricultural Production and Sustainable Development. National Institute of Agricultural Technology. National Council for Scientific and Technical Research. https://orcid.org/0009-0004-9092-4043
  • Héctor Enrique Massone Institute of Coastal and Quaternary Geology. National University of Mar del Plata. Buenos Aires Scientific Research Commission. https://orcid.org/0000-0002-5766-9237

DOI:

https://doi.org/10.59069/24225703e011

Keywords:

vulnerability, aquifer, contamination

Abstract

The objective of this study is to compare and evaluate the results provided by five methodologies for assessing aquifer vulnerability in an area of intensive agricultural activity in southeastern Buenos Aires. The study area is the Arroyo de Los Padres Basin, where the Pampeano aquifer is the sole source of water. The methodologies used include EKv, GOD/GOD-S, and DRASTIC/DRASTIC-P. The aquifer vulnerability assessment was conducted using ArcGIS 10.1 software. In general, it was observed that the most vulnerable zones coincide with the low-lying areas of the basin, while the less vulnerable zones are found in the higher areas. The EKv method identifies over 75% of the study area as having moderate vulnerability, making it the least restrictive and suitable for initial assessments. The GOD and GODS methodologies show a large area classified as "low vulnerability," with GODS indicating low vulnerability in 96% of the territory. DRASTIC and DRASTIC-P reveal greater areas of "high vulnerability." These two methodologies utilize more variables and provide more reliable and realistic results.In summary, the DRASTIC and DRASTIC-P methods are more useful for decision-making and aquifer protection, as they consider important parameters related to vulnerability. These methods offer a better balance between uncertainty and utility in decision-making processes.

Author Biography

Sebastian Grondona, Institute of Coastal and Quaternary Geology. National University of Mar del Plata. Buenos Aires Scientific Research Commission. Institute of Marine and Coastal Research. National University of Mar del Plata. National Council for Scientific and Technical Research.

Sebastian Iván Grondona has a degree in Geological Sciences (UNS 2006) and a PhD in Geological Sciences (UNRC, 2014). He teaches and researcher at the Institute of Coastal and Quaternary Geology (UNMDP-CICPBA) and studies the dynamics of contaminants in aquifers.

References

Arregui, M., Grenón, D., Sánchez, D. y Ghione, J. (2013). Evaluación del riesgo de impacto ambiental de plaguicidas en cultivos anuales del centro de Santa Fe. Revista FAVE - Ciencias Agrarias, 12(1/2), 13-22. https://doi.org/10.14409/fa.v12i1/2.5114

Atucha, A., Lacaze, M. y Adlercreutz, E. (2018). Sector rural. En E. Adlercreutz (Ed.), Segundo Informe de Monitoreo Ciudadano. Para saber qué ciudad queremos, necesitamos saber qué ciudad tenemos (pp. 242-247). Red Mar del Plata Entre Todos.

Auge, M. (1995). Primer Curso de Posgrado de Hidrogeología Ambiental. Universidad de Buenos Aires, (inédito): 1-65.

Auge, M. P. (2004). Hidrogeología Ambiental. Dirección de Geología Ambiental y Aplicada. Instituto de Geología y Recursos Minerales. Servicio Geológico Minero Argentino, Serie Contribuciones Técnicas, Ordenamiento Territorial N°5, 131 pp. Buenos Aires. http://repositorio.segemar.gob.ar/handle/308849217/82

Bedmar, F., Gianelli, V., Angelini, H. y Viglianchino, L. (2015). Riesgo de contaminación del agua subterránea con plaguicidas en la cuenca del arroyo El Cardalito, Argentina. Revista de investigaciones agropecuarias, 41(1), 70-82.

Bocanegra, E. y Benavente, M. A. (1994). Simulación numérica del sistema de flujo de las aguas subterráneas en Mar del Plata, Argentina (período 1920-1969). II Congreso Latinoamericano de Hidrología Subterránea (Santiago, Chile), (pp. 213-224).

ESRI (2012). ArcGIS Desktop: Release 10.1. Redlands, CA: Environmental Systems Research Institute.

Sagardoy, J.A. (1993). An overview of pollution of water by agriculture. En: Prevention of Water Pollution by Agriculture and Related Activities (pp. 19-22). Actas de la Consulta de Expertos de la FAO, Water Report 1.

Foster, S. y Hirata, R. (1988). Groundwater pollution risk assessment: A methodology using available data. WHO-PAHO/HPE-CEPIS Technical Manual, Lima, Peru. 81 pp.

Foster, S., Hirata, R. y Andreo, B. (2013). El concepto de vulnerabilidad a la contaminación acuífera: ¿ayuda o impedimento para la promoción de la protección de las aguas freáticas? Hydrogeology Journal, 21, 13891392. https://doi.org/10.1007/S10040-013-1019-7

Foster, S., Hirata, R. Gomes, D., D’Elia, M., y Paris, M. (2002). Groundwater quality protection: a guide for water service companies, municipal authorities and environment agencies. World Bank, WMATE. Washington, 101 pp.

Girardin, P., Bockstaller, C. y Der Werf, H. V. (1999). Indicators: Tools to evaluate the environmental impacts of farming systems. Journal of Sustainable Agriculture, 13, 5-21.

González, N. (2005). Los ambientes hidrogeológicos de la Provincia de Buenos Aires. En R. de Barrio, R. Etcheverry, M. Caballé y E. Llambías (Eds.), Geología y Recursos Minerales de la Provincia de Buenos Aires, 16° Congreso Geológico Argentino, Relatorio (pp. 359-374).

Gustafson, D. I. (1989). Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry, 8, 339-357.

Gutsche, V. y Rossberg, D. (1997). SYNOPS 1.1: a model to assess and compare the environmental risk potential of active ingredients in plant protection products. Agriculture, Ecosystems y Environment, 64, 181-188.

Higley, L. G. y Wintersteen, W. K. (1992). A novel approach to environmental risk assessment of pesticides as a basis for incorporating environmental costs into economic injury levels. American Entomologist, 38, 34-39.

INTA. (2015). Cartas de suelo de la Provincia de Buenos Aires. Recuperado el 1 de septiembre de 2022 de https://inta.gob.ar/documentos/carta-de-suelos-de-la-provincia-de-buenos-aires

Kovach, J., Petzoldt, C., Degni, J. y Tette, J. (1992). A method to measure the environmental impact of pesticides. New York's Food and Life Sciences Bulletin, 139, 1-8.

Lu, C., y Tian, H. (2017). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half-century: Shifted hot spots and nutrient imbalance. Earth System Science Data, 9, 181–192. https://doi.org/10.5194/essd-9-181.

Margat, J. (1968). Vulnerabilite des nappes d'eau souterraine a la pollution: bases de la cartographie. BRGM Publicación 68-SGL 198, Orleans, Francia.

Martínez, G.A. y Cionchi, J.L. (1988). Morfometría e hipsometría en cuencas de drenaje de la mitad septentrional del partido de General Pueyrredon, provincia de Buenos Aires. Actas II Jornadas Geológicas Bonaerenses (Bahía Blanca), (pp. 153-161).

Massone, H.E. y Barilari, A. (2020). Groundwater pollution: a discussion about vulnerability, hazard and risk assessment. Hydrogeology Journal, 28, 463-466. https://doi.org/10.1007/s10040-019-02090-0

Massone, H. y Martinez, D. (2008). Consideraciones metodológicas acerca del proceso de gestión del impacto y riesgo de contaminación de acuíferos. Revista Ingenierías, 7(12), 9-22.

Unesco. (2021). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2021: El valor del agua. UNESCO, París. Recuperado el 12 de noviembre de 2022 de https://unhabitat.org/sites/default/files/2021/07/375751spa.pdf

OSSE (2010). Sistema de acueducto oeste de provisión de agua potable a la ciudad de Mar del Plata. Parte 1. Plan Director. Documento técnico Obras Sanitarias mar del Plata SE, inédito. 88 pp.

Pullará, C. (2022). Evaluación de la vulnerabilidad del acuífero Pampeano en el Partido de General Pueyrredón. Tesis de Grado inédita. Facultad de Ingeniería, UFASTA.

Rao, P. S. C., Hornsby, A. G. y Jessup, R. E. (1985). Indices for ranking the potential for pesticide contamination of groundwater. Soil and Crop Science Society of Florida, 44, 1-8.

Romanelli, A. (2012). Evaluación ambiental de lagunas pampásicas del Sudeste Bonaerense. Diagnóstico y perspectivas de gestión sustentable. Tesis Doctoral inédita. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata.

Shrestha, G., Uchida, Y., Kuronuma, S., Yamaya, M., Katsuragi, M., Kaneko, S., Shibasaki, N. y Yoshioka, M. (2017). Performance evaluation of a ground-source heat pump system utilizing a flowing well and estimation of suitable areas for its installation in Aizu Basin, Japan. Hydrogeology Journal, 25(6), 1437-1450. https://doi.org/10.1007/s10040-017-1536-x

Viglianchino, L., Bedmar, F., Massone, H., Puricelli, M. y Okada, E. (2021). Caracterización social, productiva y tecnológica del cinturón hortícola de Mar del Plata. XXXVIII Congreso Argentino de Horticultura (La plata).

Viglianchino, L. Okada, E., Bedmar, F., Massone, H., y Puricelli, M. (2021). Uso de fitosanitarios en la producción hortícola: caso de estudio en el Cinturón Hortícola de Mar del Plata. XXXVIII Congreso Argentino de Horticultura (La Plata).

Vrba, J. y Zaporozec, A. (1994). Guidebook on mapping groundwater vulnerability. IAH International Contributions to Hydrogeology, 16. Heise Publication.

Published

2023-11-06

How to Cite

Viglianchino, L. E., Sebastian Iván, Bedmar, F., Angelini, H. P., & Massone, H. E. (2023). The aquifer vulnerability map as a tool for preventing water contamination in agricultural areas. The case of Los Padres stream basin (General Pueyrredon district, Buenos Aires province, Argentina). Journal of Engineering Geology and the Environment, (50), e011. https://doi.org/10.59069/24225703e011
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Original Articles
فروشگاه اینترنتی صندلی اداری